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SUMMARY

Huntington’s disease-like-2 (HDL2) is a phenocopy of
Huntington’s disease caused by CTG/CAG repeat
expansion at the Junctophilin-3 (JPH3) locus. The
mechanisms underlying HDL2 pathogenesis remain
unclear. Here we developed a BAC transgenicmouse
model of HDL2 (BAC-HDL2) that exhibits progressive
motor deficits, selective neurodegenerative pathol-
ogy, and ubiquitin-positive nuclear inclusions (NIs).
Molecular analyses reveal a promoter at the trans-
gene locus driving the expression of a CAG repeat
transcript (HDL2-CAG) from the strand antisense to
JPH3, which encodes an expanded polyglutamine
(polyQ) protein. Importantly, BAC-HDL2 mice, but
not control BAC mice, accumulate polyQ-containing
NIs in a pattern strikingly similar to those in the
patients. Furthermore, BAC mice with genetic
silencingof theexpandedCUG transcript still express
HDL2-CAG transcript and manifest polyQ pathogen-
esis. Finally, studies of HDL2 mice and patients re-
vealed CBP sequestration into NIs and evidence for
interference of CBP-mediated transcriptional activa-
tion. These results suggest overlapping polyQ-medi-
ated pathogenic mechanisms in HD and HDL2.

INTRODUCTION

Huntington’s disease-like-2 (HDL2) is an autosomal dominant

neurodegenerative disorder that has a broad phenotypic overlap
with Huntington’s disease (HD) (Margolis et al., 2001). Similar to

HD, HDL2 is characterized by adult onset of symptoms including

chorea, dystonia, rigidity, bradykinesia, psychiatric symptoms,

and dementia, eventually leading to premature death about

10–15 years after disease onset (Margolis et al., 2005). HDL2

accounts for a small subset of patients with clinical manifesta-

tions of HD who do not have the HD mutation, an expanded

CAG repeat-encoding polyglutamine (polyQ) repeat in huntingtin

(Margolis et al., 2001, 2004; Schneider et al., 2007).

The neuropathology of postmortem HDL2 brains is strikingly

similar to that of HD (Greenstein et al., 2007; Rudnicki et al.,

2008). Both exhibit robust and selective striatal and cortical

atrophy with neurodegeneration primarily targeting the striatal

medium spiny neurons (MSNs) and a subset of cortical pyramidal

neurons (Greenstein et al., 2007; Rudnicki et al., 2008).Moreover,

both HD and HDL2 brains contain intranuclear inclusions (NIs)

that are ultrastructurally similar and are immunostained with

ubiquitin and 1C2 (an antibody against the expanded polyQ

epitope that can also recognize polyleucine; Trottier et al.,

1995; Dorsman et al., 2002). The pattern of NI distribution in HD

and HDL2 is similar, but not identical. They both have a higher

density in the cortex and amygdala than in the striatum and NIs

are rarely observed in the cerebellum or midbrain (Greenstein

et al., 2007; Rudnicki et al., 2008). However, unlike those in HD,

NIs in HDL2 are more frequent in the upper cortical layers II/III

than deep cortical layers, and they are absent in the pons and

medulla (Greenstein et al., 2007; Rudnicki et al., 2008). Another

key pathological difference between the two disorders is that

NIs in HD, but not those in HDL2, contain mutant huntingtin

(mhtt) (Margolis et al., 2001). Therefore, the pathogenic origin of

NIs in HDL2 remains to be uncovered.

HDL2 is caused by a CTG/CAG expansion on chromosome

16q24.3 (Holmes et al., 2001). The expanded CTG/CAG repeats
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in HDL2 patients range from 40–59, with normal individuals

carrying 6–28 repeats. HD and HDL2 not only have comparable

ranges of CTG/CAG repeat expansions, but also similar slopes

in their inverse relationships between the repeat length and age

of onset for movement disorders (Margolis et al., 2004). The

CTG repeat expansion is located within the variably spliced

exon 2A of JPH3, which is not part of the main transcript encod-

ing JPH3 protein (Holmes et al., 2001). On the sense strand, three

splice variants that include exon2Ahavebeendescribed, placing

the expanded CTG repeat in polyleucine or polyalanine open

reading frames (ORFs) or in the 30 untranslated region (UTR).

Currently, the molecular pathogenic mechanisms for HDL2

remain an enigma (Margolis et al., 2005; Orr and Zoghbi,

2007). Three possible mechanisms have been postulated. First,

the expansion of the CUG repeat may reduce JPH3 mRNA

expression leading to a partial loss of function for JPH3 protein,

which normally tethers the plasma membrane to the endo-

plasmic reticulum to facilitate crosstalk between cell surface

and intracellular ion channels (Nishi et al., 2002; Takeshima,

2001). In support of this theory, JPH3 knockout mice exhibit

motor impairment but such mice do not appear to accumulate

NIs or exhibit neurodegeneration (Nishi et al., 2002). A second

possible pathogenic mechanism, similar to that demonstrated

for myotonic dystrophy types 1 and 2 (DM1 and DM2), is that

the expanded CUG or CCUG repeat RNA form RNA foci which

can sequester an RNA binding protein muscleblind-like 1

(MBNL1) and interfere with its function in regulating alternative

splicing (Ranum and Cooper, 2006; Kanadia et al., 2003).

Supporting this possibility, Rudnicki and colleagues (Rudnicki

et al., 2007) showed CUGRNA foci in HDL2 brains and the ability

of mutant HDL2-CUG RNA transcripts to interfere with the

splicing of MBNL1 targets in cultured cells. However, the

expanded CUG RNA in DM1 was not known to elicit NIs or

apparent neurodegeneration. Moreover, CUG RNA foci in

HDL2 patients do not frequently colocalize with NIs (Rudnicki

et al., 2007), suggesting distinct pathogenic origins for these

entities.

To gain insight into the pathogenesis of an HD phenocopy, we

developed a series of bacterial artificial chromosome (BAC)-

mediated transgenic mouse models of HDL2 (BAC-HDL2) that

contain an expanded CTG/CAG repeat in the human JPH3

BAC, as well as control BAC mice with a nonexpanded CTG/

CAG repeat. BAC-HDL2, but not control BAC, mice recapitulate

motor, neuropathological, and molecular phenotypes similar to

those in the patients. Importantly, molecular analyses revealed

a promoter driving the expression of an expanded CAG repeat-

containing transcript emanating from the strand antisense to

JPH3. This mutant HDL2-CAG transcript can mediate polyQ

protein toxicity (e.g., sequestration and interference of CREB

binding protein [CBP]-mediated transcription), hence providing

a molecular pathogenic link between HD and HDL2.

RESULTS

Generation and Characterization of a BAC Transgenic
Mouse Model of HDL2
Because BACs preserve the intact human genomic context and

have been successfully used to develop transgenic mouse
428 Neuron 70, 427–440, May 12, 2011 ª2011 Elsevier Inc.
models for other neurodegenerative disorders including HD

(Gong et al., 2002; Yang et al., 1997; Gray et al., 2008; Gu

et al., 2009), we undertook a BAC transgenic approach to

develop a mouse model for HDL2. We selected a human BAC

(RP11-33A21) that contains the intact 95 kb JPH3 genomic locus

in addition to approximately 30 kb 50- and 40 kb 30-genomic

flanking sequences. The BAC was engineered to contain an

expanded CTG/CAG track of 120 repeats in exon 2A of JPH3,

preserving the repeat ORFs in both the sense and antisense

strands compared to those in the patients (Figure 1A).

In designing the BAC-HDL2 construct, we purposely chose

a longer stretch of CTG/CAG repeats (�120 repeats) than what

is found in patients (i.e., 40–59 repeats) because prior experi-

ence in modeling other trinucleotide repeat disorders such as

SCA1 and HD suggests that longer repeat lengths are needed

to accelerate the disease process such that disease manifesta-

tion occurs within the short lifespan of a mouse (Zoghbi and

Botas, 2002).

The engineered mutant BAC was microinjected into inbred

FvB/N mouse embryos to generate transgenic founders. A total

of ten BAC-HDL2 founders were obtained and five were bred for

germline transmission. Three of the BAC-HDL2 lines (C, F, and

M) integrated one to four copies of the BAC transgene (data

not shown). Direct sequencing was used to determine the

precise repeat length: C line has 116 CTG/CAG repeats, F line

has 122 repeats, and M line has integration at a single locus of

BAC with 119 and 13 repeats. Because both C and F lines

have only the expanded repeats, we focused our phenotypic

studies on these two independent lines. We next assessed

whether JPH3 mRNA and JPH3 protein are overexpressed in

these models. As demonstrated in Figure 1B, reverse transcrip-

tase PCR (RT-PCR) analysis that specifically amplified exon 2B

to exon 4 of JPH3 readily detects transgene expression in the

brain of BAC-HDL2 lines. Semiquantitative RT-PCR (sqRT-

PCR) analyses revealed that the level of overexpression was

about 100% of endogenous murine Jph3 in the C line and about

20% in the F line (Figure S1, available online). Intriguingly, when

we analyzed BAC-HDL2 lines for JPH3 protein levels, we did not

detect any significant overexpression (Figure 1C and Figure S1).

Nonetheless, the latter observation is consistent with the finding

in DM1 that the expanded CUG repeat may impair DMPK protein

expression via a cis mechanism of reduced RNA nuclear export

(Ranum and Cooper, 2006). Because of the higher level of trans-

gene expression in the BAC-HDL2-C line, the majority of our

phenotypic analyses are focused on this line (hereafter referred

to as BAC-HDL2). However, several pathogenic phenotypes

were also independently confirmed by using the F line (BAC-

HDL2-F).

BAC-HDL2 Mice Exhibit Age-Dependent Motor Deficits
and Neurodegenerative Pathology
HDL2 patients are characterized clinically by a middle-aged

onset of movement disorders including motor incoordination

(Margolis et al., 2005) and neuropathologically by the selective

atrophy of the striatum and cortex (Greenstein et al., 2007;

Rudnicki et al., 2008). To evaluate whether our model recapitu-

lates aspects of these disease features, we studied a cohort

of BAC-HDL2 mice and wild-type littermates by using the



Figure 1. Generation and Characterization of BAC-HDL2 Animals

(A) A schematic representation of the human JPH3 locus. A BAC containing the intact JPH locus (RP11-33A21) wasmodified in order to insert�120 CTG repeats

into the alternatively spliced exon 2A (white triangle).

(B) RT-PCR was performed by using primers specific to human JPH3 exons 2B and 4.

(C) JPH3 western blot was performed on brain lysates isolated from BAC-HDL2 C/M/F lines and wild-type control.

(D) Accelerating rotarod testing was performed at 3, 6, and 12 months old (3 months: wild-type, n = 22; BAC-HDL2, n = 16; 6 months: wild-type, n = 14 and

BAC-HDL2, n = 11; 12 months: wild-type, n = 10; BAC-HDL2, n = 11).

(E) BAC-HDL2 forebrains weigh significantly less than their wild-type littermates at both 12 and 22 months old.

(F) No significant differences were detected in cerebellum weights between BAC-HDL2 and its wild-type littermates at 12 and 22 months old.

(G) Stereological brain volume measurements of BAC-HDL2 cortex and striatum revealed a significant decrease in the cortical volume at 18–22 months old

(BAC-HDL2: striatum, n = 6; cortex, n = 6; wild-type: striatum, n = 6, cortex, n = 6). Values are mean ± SEM (*p < 0.05, **p < 0.01, Student’s t test).
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behavioral and neuropathological assays that have been estab-

lished for HD mice (Gray et al., 2008). To assess evidence of

age-dependent motor deficits, we used accelerating rotarod

assay and observed significant impairment in BAC-HDL2 mice

compared to wild-type controls at both 6 and 12 months old,

but not at 3 months old (Figure 1D). Statistical analyses by using

a general linear model with repeated-measures two-way ANOVA

revealed an effect of time (F2, 30 = 8.728, p = 0.001) and genotype

(F1,15 = 4.651, p = .048) on rotarod performance as well as a

significant time/genotype interaction (Figure 1E) (F2,30 = 14.822,

p < 0.001). One-way ANOVA analysis revealed that latency to fall

significantly decreased in BAC-HDL2 mice over time (F2,37 =

19.047, p < 0.001), while no such change was observed in
wild-type littermates. These results reveal that BAC-HDL2

mice exhibit progressive motor deficits when compared to their

wild-type littermate controls.

To assesswhether BAC-HDL2mice also exhibited evidence of

neurodegenerative pathology, we weighed the forebrain and

cerebellum at 12 and 22 months old, an assay that is able to

detect selective forebrain atrophy in BACHD mice (Gray et al.,

2008). As shown in Figures 1E and 1F, we observed a significant

decrease in forebrain weight, but not cerebellar weight, in

BAC-HDL2 mice as compared to wild-type controls. No differ-

ence in forebrain weight was detected at 3 months old (data

not shown). To more precisely quantify forebrain atrophy, we

performed unbiased stereology by using 18- to 22-month-old
Neuron 70, 427–440, May 12, 2011 ª2011 Elsevier Inc. 429



Figure 2. Ubiquitin-Immunoreactive Nuclear Inclusions in BAC-HDL2 Brains

(A and B) Antigen retrieval followed by immunohistochemical staining with 1C2 antibody. Twelve-month-old BAC-HDL2 brain sections revealed numerous large

inclusion bodies in the cortical layers II/III (B). No such staining was observed in the respective brain regions in the wild-type animals (A).

(C) Ubiquitin-immunoreactive inclusion bodies in BAC-HDL2 brain are colocalized with the nuclear marker DAPI; hence, they are nuclear inclusions (NIs).

(D) Distribution of NI size in BAC-HDL2 mice at 3 and 12 months old with summary histograms shown. Mean = 1.8 mm versus 3.13 mm for 3 and 12 months old,

respectively; *p < 0.001, Student’s t test. BAC-HDL2: motor sensory (MS) cortex layers I/II/III at 3 months old (155 NIs measured in two mice) and 12 months old

(194 NIs measured in two mice). Scale bar = 50 mm.
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BAC-HDL2 and control brains and found a significant reduction

of cortical, but not striatal, volumes in BAC-HDL2 mice

compared to the controls (Figure 1G). The latter finding may

reflect a more slowly progressive neurodegenerative process

in BAC-HDL2 striata. In summary, our behavioral and neuropath-

ological studies reveal that BAC-HDL2 mice exhibit age-depen-

dent motor deficits and neurodegenerative pathology consistent

with those in HDL2.

BAC-HDL2 Mice Recapitulate Key Molecular
Pathological Features of HDL2
We next addressed whether BAC-HDL2 mice also recapitulate

the two molecular pathological hallmarks of HDL2, ubiquitin-

positive NIs and CUG RNA foci that colocalize with MBNL1

(Greenstein et al., 2007; Rudnicki et al., 2007, 2008). As shown

in Figure 2, we could readily detect prominent ubiquitin-immuno-

reactive inclusion bodies in BAC-HDL2, but not wild-type

control, mice at 12 months old. Double fluorescent staining

with an anti-ubiquitin antibody and DAPI demonstrated that the

inclusion bodies were exclusively localized in the nucleus and

hence were NIs (Figure 2C). Moreover, double immunostaining

for ubiquitin and NeuN revealed that NIs were exclusively local-

ized within neurons in BAC-HDL2 brains (data not shown). The
430 Neuron 70, 427–440, May 12, 2011 ª2011 Elsevier Inc.
distribution of the NIs in the brains of BAC-HDL2 mice is remark-

ably similar to that in the patients (Figure S2A; Greenstein et al.,

2007; Rudnicki et al., 2008). Ubiquitin-positive NIs were most

abundant in the upper cortical layers, hippocampus (data not

shown), and amygdala, with relatively low levels detected in

the deep cortical layers and striatum. NIs were not detected in

the cerebellum (Figure S2A), substantia nigra, thalamus, or brain

stem (data not shown).

We next investigated whether the formation of NIs is progres-

sive in BAC-HDL2 brains. NIs were absent in BAC-HDL2 brains

at 1 month old, but could be readily detected in the cortex and

hippocampus starting at 3 months old (data not shown). The

size of NIs in BAC-HDL2 cortical neurons increases from an

average diameter of 1.8 mm at 3 months old to 3.13 mm by

12 months old (Figure 2D). In summary, neuropathological

analyses revealed that BAC-HDL2 mice recapitulate the

progressive and brain region-specific formation of ubiquitin-

positive NIs, a key pathological hallmark of HDL2.

The second pathological hallmark for HDL2 is the formation of

CUG repeat-containing RNA foci that are independent of the

NIs (Rudnicki et al., 2007). To assess whether 6-month-old

BAC-HDL2 mice might also recapitulate such phenotype,

we performed fluorescent in situ hybridization (FISH) with an



Figure 3. The Distribution of 3B5H10-Immu-

noreactive NIs in BAC-HDL2 Brains Reca-

pitulates that Seen in HDL2 Patients

Immunostaining with a monoclonal antibody

against expanded polyQ (3B5H10) in 12-month-

old BAC-HDL2 and wild-type brain sections.

Prominent 3B5H10-stained aggregates are de-

tected in the mutant, but not wild-type, mouse

brains in the upper cortical layers and hippo-

campus (A), striatum (B), and amygdala (C). Very

few if any 3B5H10-immunoreactive aggregates

were detected in the cerebellum (D) or thalamus

(E). Scale bar = 200 mm; inset scale bar = 25 mm.
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established protocol (Rudnicki et al., 2007). We could readily

detect CUG RNA foci in BAC-HDL2, but not wild-type, cortical

sections (Figure S2B). Similar to those in HDL2 patients, the

RNA foci were rarely colocalized with NIs and were colocalized

with Mbnl1 (Figure S2B). Thus, we concluded that BAC-HDL2

mice also recapitulate the phenotype of CUG RNA foci, another

molecular pathological marker for HDL2.

Evidence for Polyglutamine Protein Pathology
in BAC-HDL2 Brains
One intriguing finding in HDL2 neuropathology is the immunore-

activity of NIs with 1C2, amonoclonal antibody that has relatively

high specificity to all expanded neuropathogenic polyQ proteins
Neuron 70, 427–
(Trottier et al., 1995), but can also

recognize some normal long polyQ

proteins such as TBP as well as some

other amino acid stretches such as poly-

leucine (Dorsman et al., 2002). Because

of this latter possibility, the precise

molecular nature of the 1C2 immunoreac-

tivity within NIs in HDL2 remains to be

clarified.

We next asked whether the NIs in BAC-

HDL2 mice, like those in HDL2 patients,

could be immunostained with 1C2. By

using a sensitive antigen retrieval tech-

nique (Osmand et al., 2006) we were

able to detect 1C2-immunoreactive NIs

in 12-month-old BAC-HLD2 brains that

are unlike the faint diffuse nuclear staining

found in the wild-type controls (Fig-

ure S3A). Such 1C2 (+) NIs were not

detected at 1 month old, but could be

detected at 3 months old and became

progressivelyenlargedat6and12months

old (Figures S3A andS3C). Finally, double

immunofluorescent staining revealed that

1C2-immunoreactive NIs colocalized

with ubiquitin-positive NIs (Figure S3B),

suggesting that the composition of NIs

in BAC-HDL2 mice is quite similar to

those described in HDL2 patients.

To provide further evidence that BAC-

HDL2 NIs contain an expanded polyQ

protein, we used another monoclonal antibody, 3B5H10, which

has been shown to be specific to the expanded polyQ epitope

in all known polyQ disorders (Brooks et al., 2004). Immunostain-

ing with 3B5H10 after antigen retrieval revealed that NIs in

12-month-old BAC-HDL2 cortices and striatum were promi-

nently stained with this expanded polyQ-specific antibody

(Figure 3). No such 3B5H10 (+) NIs were detected in the brains

of wild-type control littermates at 12 months old (Figure 3).

Importantly, the distribution of 3B5H10-immunoreactive NIs in

BAC-HDL2 brains is strikingly similar to that of patients, with

prominent levels of NIs in the cortex (the upper cortical layers

more than the deep cortical layers), hippocampus, and amyg-

dala, decreased abundance in the striatum, and very few if any
440, May 12, 2011 ª2011 Elsevier Inc. 431



Figure 4. Expression of Mutant HDL2-CAG RNA and Proteins in BAC-HDL2 Brains

(A) Graphic representation of potential HDL2-CAG transcript(s) containing the expanded CAG repeat with polyQ ORFs (vertical arrowheads). The two closest

polyA signals are shown. A red arrowmarks the location of the primer used to drive reverse-strand-specific cDNA synthesis. The black arrowmarks the location of

the forward primer used for PCR after cDNA synthesis. Defined HDL2-CAG mutant transcripts include two potential ORFs through the CAG repeat (black

arrowhead with asterisks) based on the differential usage of the two ATG translational initiation codons that can be amplified (the first ATG codon is not in any 50

RACE product).

(B) RT-PCR analyses provide evidence for the expression of HDL2-CAG transcripts emanating from the JPH3 antisense strand in BAC-HDL2 animals.

(C) DNA upstream of HDL2-CAG (position defined by dashed line) was cloned in front of luciferase in order to detect promoter activity in primary cortical neurons.

Values are mean ± SEM (*p < 0.01 for pGL3-HDL2CAG [1kb], pGL3-HDL2CAG [.5 kb], and pGL3-HDL2CAG [.25 kb] compared to empty vector, pGL3-empty).

(D) Western blot analysis with 3B5H10 antibody was performed on soluble nuclear soluble fractions as well as insoluble fractions extracted from the forebrain of

BAC-HDL2 andwild-type 18-month-oldmice. Black arrowheads point to disease-associated polyQ protein bands found specifically in BAC-HDL2 line brains, but

not in wild-type littermate controls. This novel polyQ protein (termed HDL2-CAG) markedly accumulates in the insoluble fraction in the aged mutant brains.
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NIs detected in the cerebellum, thalamus, and brain stem (Fig-

ure 4 and data not shown).

Taken together, our neuropathological studies with both 1C2

and 3B5H10 antibodies demonstrated that the NIs found in

BAC-HDL2 brains recapitulate the patterns seen in HDL2

patients. Furthermore, an expanded polyQ protein is probably

a component of such NIs.

JPH3 BAC Transgenic Mice with Nonexpanded
CTG/CAG Repeats Do Not Exhibit Evidence
of Disease Pathogenesis
Because pathogenesis of HDL2 has been linked to the expan-

sion of CTG/CAG repeats at the human JPH3 locus (Holmes

et al., 2001), we next addressed whether disease pathogenesis

in the BAC-HDL2 model, particularly the formation of NIs, could

also be dependent on the repeat expansion in the BAC trans-

gene. To test this hypothesis, we used two different wild-type

JPH3 BAC transgenic control mice. The first control model
432 Neuron 70, 427–440, May 12, 2011 ª2011 Elsevier Inc.
was generated in the FvB/N background by using the same

wild-type BAC (RP11-33A21) as the one used to generate

BAC-HDL2, except the CTG/CAG repeat length was 14. This

control wild-type BAC construct was engineered to insert an

enhanced green fluorescent protein (EGFP) within exon 1 of

JPH3 (Figure S4A). The transgenic mouse line (termed BAC-

JPH3) expressed EGFP as well as the nonexpanded CUG and

CAG transcripts, but not JPH3 protein (Figure S1). This mouse

line is an ideal control to addresswhether overexpression of non-

expanded CUG- or CAG-containing mRNA transcripts from the

JPH3 transgene locus could induce toxicity in vivo. To assess

whether overexpression of any wild-type proteins encoded by

the JPH3 sense strand transcripts could induce disease patho-

genesis, we employed a second control mouse model. This

control utilized a different BAC (CTD-2195P9) encompassing

the intact human JPH3 genomic locus with 14 CTG/CAG repeats

and was created and maintained in the C57/BL6 background

(BAC-JPH3b6; Figure S4B). Expression analyses revealed
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BAC-JPH3 and BAC-JPH3b6 mice express JPH3 mRNA at

levels comparable to that found in BAC-HDL2-F line mice (Fig-

ure S1; data not shown).

Phenotypic studies of both BAC-JPH3 and BAC-JPH3b6

control mice did not reveal any evidence of disease pathogen-

esis. First, BAC-JPH3 mice did not exhibit any rotarod deficits

at 3 or 6 months old and their brains did not show 3B5H10-

immunoreactive polyQ NIs at 14–18 months old (Figure S4B).

Second, brain sections from 18- to 22-month-old BAC-JPH3b6

mice were not positively stained for ubiquitin or polyQ NIs

(Figure S4B). To ascertain that the lack of NI phenotype in

BAC-JPH3 control mice was not due to the relatively low level

of transgene expression compared to the BAC-HDL2 line

(�20%), we also assessed NI formation in the BAC-HDL2-F

line, which has comparable levels of transgene expression to

the BAC-JPH3 control mouse lines. As shown in Figure S4C,

3B5H10-immunoreactive NIs were readily detected in the cortex

and hippocampus of 22-month-old BAC-HDL2-F line mice.

Together, our analyses demonstrate that disease pathogenesis

in HDL2 mice is dependent on CTG/CAG repeat expansion in

the BAC transgene.

A Promoter Drives the Expression of an Antisense
CAG Transcript Encoding an Expanded PolyQ Protein
in BAC-HDL2 Mice
We next sought to address the molecular origin of the polyQ

immunoreactivity within the NIs in BAC-HDL2 brains. Previously

postulated sources of 1C2-immunoreactive NIs in HDL2 patients

include: expression of a novel polyQ protein emanating from the

strand antisense to the JPH3 locus, expression of an expanded

polyleucine protein encoded by a CUG transcript, and seques-

tration of proteins with a long but nonpathogenic polyQ stretch

such as TBP (Holmes et al., 2001; Margolis et al., 2005; Rudnicki

et al., 2007). Studies conducted with limited patient brain

samples could not definitively identify the source for the 1C2-

immunoreactive NIs in HDL2 brains. In this study, we tested

the hypothesis that NIs in HDL2 are due to the expression of

a polyQ protein encoded by a JPH3 antisense transcript contain-

ing an expanded CAG repeat.

Bioinformatic analyses performed on the antisense strand of

the human JPH3 locus revealed three ORFs that included the

CAG-encoded polyQ stretch as well as several predicted

downstream polyA signals (Figure 4A). To find evidence for the

expression of such CAG transcripts, we used antisense-

strand-specific and human-transcript-specific RT-PCR anal-

yses (see Supplemental Experimental Procedures). These anal-

yses readily detected the expression of antisense transcripts in

BAC-HDL2 mouse brains, but not in wild-type controls (Fig-

ure 4B). In order to define the 50 and 30 regions of the transcript,

we performed rapid amplification of cDNA ends (RACE). We

were able to identify 50 RACE products encompassing the

proximal two ATG codons in the polyQ ORF and 30 RACE re-

vealed a polyA signal �4kb from the repeat (data not shown).

Similar antisense CAG transcripts were also detected in BAC-

JPH3 control mice (see Figures 5D and 5E). This transcript,

which we named HDL2-CAG, contains two translation-initiation

codons (ATG) in frame with the polyQ-encoding CAG repeat.

This protein contains a predicted ORF with 54 amino acids prior
to the polyQ repeat and 27 amino acids after the repeat

(Figure 4A).

Because BAC-HDL2 mice express the HDL2-CAG transcript,

we asked whether the genomic sequence preceding the polyQ

ORF could possess promoter activity in primary neurons. To

test this possibility, we subcloned three genomic DNA fragments

consisting of 0.25, 0.5, and 1 kb of genomic DNA sequence

preceding the HDL2-CAG ORF into a luciferase reporter

construct (Figure 4C). The resulting constructs were transfected

into primary cortical neurons to test their ability to drive luciferase

transcription. Surprisingly, all three genomic fragments exhibited

robust promoter activity in this assay (Figure 4C), suggesting that

the promoter driving HDL2-CAG expression is located immedi-

ately preceding the polyQ ORF.

We next sought to provide direct evidence for the expression

of a novel expanded polyQ protein consistent with the size of

HDL2-CAG protein in BAC-HDL2 brains. We first experimentally

determined the size of both mutant and wild-type HDL2-CAG

protein by performing in vitro experiments where we expressed

Flag-tagged HDL2-CAG protein with 120-CAG (HDL2-CAG120)

or 14-CAG (HDL2-CAG14) repeats in HEK293 cells (Figure S5).

Western blot analyses with 1C2 and 3B5H10 antibodies revealed

that HLD2-CAG120 protein in such transfected cells migrates as

a doublet between 40 and 45kDa (Figure S5). HDL2-CAG14,

which migrates at �16kDa, is detected with the anti-Flag anti-

body and only marginally by the 1C2 antibody. Because

3B5H10 can selectively detect HDL2-CAG120 protein in vitro,

we performed western blot analyses by using fractionated brain

extracts from 22-month-old BAC-HDL2 mice and wild-type

controls. Immunoblotting with 3B5H10 antibody detected

a doublet that migrated between 40 and 45kDa in BAC-HDL2

brains, but not wild-type control brains, consistent with the

size of HDL2-CAG120 protein in the in vitro experiments (Fig-

ure 4D). Interestingly, mutant HDL2-CAG protein can be robustly

detected in insoluble nuclear fractions once the preparation has

been solubilized by boiling in 2% SDS, but only a small, yet still

detectable, amount of mutant HDL2-CAG can be found in the

soluble nuclear fraction in the mutant, but not in wild-type,

mouse brains (Figure 4D, long exposure).

In summary, we have demonstrated evidence for the expres-

sion of a CAG repeat-containing transcript in BAC-HDL2 mice,

emanating from the strand antisense to the JPH3 genomic locus.

This expanded CAG transcript is driven by a promoter located

immediately upstream of the polyQ ORF and is translated into

an expanded polyQ protein in vivo.

Genetic Silencing of HDL2-CUG Transcripts Does
Not Prevent the Expression of HDL2-CAG Transcripts
and Polyglutamine Pathogenesis
Because genomic DNA immediately 50 to the HDL2-CAG ORF

exhibits robust promoter activity, it raises the possibility that

expression of the HDL2-CAG transcript and the resulting polyQ

pathogenesis may be independent of the expression of JPH3

sense strand transcripts and their protein products. To test this

idea, we created a transgenic mouse model with a BAC con-

struct replacing the JPH3 exon 1 with GFP sequence followed

by a transcriptional STOP sequence (Soriano, 1999), but still

containing the expanded CTG/CAG repeats (�120 repeats) on
Neuron 70, 427–440, May 12, 2011 ª2011 Elsevier Inc. 433



Figure 5. Antisense HDL2-CAG Transcript

and Accumulation of PolyQ Are Indepen-

dent of the Expression of Sense Strand of

JPH3 Gene

(A) A graphic representation of the construct of

BAC-HDL2-STOP mice. A transcriptional STOP

sequence consisting of GFP followed by triple

polyadenylation signal was placed in front of the

translation initiation codon of the exon 1 of the

JPH3 on the BAC transgene. This mouse line was

designed to express GFP from JPH3 promoter,

but there is no transcription and translation of any

other mRNA in the JPH3 sense strand, including

any of the transcripts that include the expanded

CUG repeat.

(B) Anti-GFP antibody readily detected the

expression of GFP protein in the cortical neurons

in BAC-HDL2-STOP mice, but not in WT controls.

(C) JPH3 sense-strand-specific RT-PCR to

amplify HDL2-CUG transcript revealed the

expression of such transcript in BAC-HDL2 mice,

but not in two lines of BAC-HDL2-STOP mice

(lines F and G).

(D and E) Two independent strand-specific

RT-PCR primer sets (AS1 and AS2 primers)

specific to the HDL2-CAG transcripts readily de-

tected the antisense CAG transcript in JPH3-FvB

control mice, BAC-HDL2 mice, and BAC-HDL2-

STOP mice.

(F and G) 3B5H10 immunostaining reveals

progressive accumulation of polyQ NIs in cortical

neurons of 6- and 12- month-old BAC-HDL2-

STOPmice , but such NIs were not detected in the

same brain region in thewild-type littermates (data

not shown).

(H) Rotarod deficits in 12-month-old BAC-HDL2-

STOP mice compared to wild-type controls.

Significant deficits were detected on all 3 testing

days. Values aremean ± SEM (*p < 0.05, Student’s

t test). Repeated-measure ANOVA analysis re-

vealed a significant effect of time (F(2,8) = 9.250,

p < 0.0001), genotype (F(2,8) = 9.331, p = 0.009),

and interaction of time and genotype (F(2,8) =

3.026, p < 0.0001). Scale bar = 50 mm.
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the BAC (Figure 5A). The STOP sequence, consisting of a floxed

neo cassette followed by triple polyA signals, is a classic DNA

sequence used to terminate transcription (Soriano, 1999;

Srinivas et al., 2001). The resulting two mouse lines (F and G of

BAC-HDL2-STOP mice) should express only GFP driven by the

JPH3 promoter, but no other sense strand CUG repeat or

JPH3 transcripts should be expressed (Figure 5A). On the other

hand, the STOP sequence should not interfere with the transcrip-

tion of the antisense HDL2-CAG transcripts; hence the model is

still predicted to manifest polyQ pathogenesis.

To confirm the silencing of the sense strand transcripts, we

first showed the expression of GFP protein in the BAC-HDL2-

STOP, but not wild-type brains, by immunohistochemistry (Fig-

ure 5B). By using sense-strand-specific RT-PCR, we were able
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to confirm that HDL2-CUG transcripts are indeed silenced in

the BAC-HDL2-STOP mice (both F and G lines) as compared

to the BAC-HDL2 mice (Figure 5C). Conversely, RT-PCR per-

formed by using two separate antisense-strand-specific primers

readily detected HDL2-CAG transcripts in the brains of BAC-

HDL2-STOP mice as well as BAC-HDL2 and BAC-JPH3 mice

(Figures 5D and 5E). These analyses confirmed that the STOP

sequence successfully silenced the expression of JPH3 and

HDL2-CUG transcripts while leaving HDL2-CAG expression

unperturbed in BAC-HDL2-STOP mice.

We next asked whether BAC-HDL2-STOP mice would

develop NIs in vivo. Immunohistochemistry with 3B5H10

readily detected the progressive formation of polyQ NIs in

BAC-HDL2-STOP mice (G line) between 6 and 14 months old,



Figure 6. CBP Sequestration in NIs in BAC-

HDL2 Mice and HDL2 Patient Brains

(A–D) Two anti-CBP antibodies (A-22 and sc-583)

were used to confirm the presence of CBP-

immunoreactive NIs in BAC-HDL2 mice (sc-583 is

shown). Representative images of CBP staining of

the superficial cortical layers (cortical layers II/III, A

and B) and hippocampal dentate gyrus (DG, C and

D) for wild-type (A andC) and BAC-HDL2 (B and D)

sections are shown. Selected NIs are highlighted

with black arrowheads.

(E) Double immunofluorescence staining with anti-

CBP and anti-ubiquitin antibodies revealed the

presence of CBP-immunoreactive NIs that coloc-

alize with ubiquitin staining in the nucleus (DAPI

staining) in the cortical cells in HDL2 postmortem

brain. Cortical neurons in control brains do not

have CBP and ubiquitin-immunoreactive NIs and

CBP is diffusely distributed. Scale bar = 50 mm.
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but not in wild-type controls (Figures 5F and 5G; data not

shown). Similar to those in BAC-HDL2, the NIs in BAC-HDL2-

STOP mice were particularly abundant in the cortex and hip-

pocampus and diffuse nuclear accumulation could also be

detected in the striatum (Figure S6A).

We next addressed whether the selective expression of the

mutant HDL2-CAG transcripts, but not HDL2-CUG or JPH3

transcripts, is sufficient to elicit motor deficits and/or neurode-

generative pathology. As shown in Figure 5H, BAC-HDL2-

STOP mice exhibit a significant accelerating rotarod deficit at

12 months old (n = 8 per genotype; p < 0.05 for each of the

3 testing days with Student’s t test). Repeated-measures

ANOVA analysis reveals a significant effect of time (F(2,8) =

9.250, p < 0.0001), genotype (F(2,8) = 9.331, p = 0.009), and inter-

action of time and genotype (F(2,8) = 3.026, p < 0.0001), suggest-

ing that mutant mice exhibit both motor performance and motor

learning deficits in the rotarod test. To assess whether BAC-

HDL2-STOP transgenic mice also show evidence of neurode-

generative pathology similar to that in BAC-HDL2 mice, we

weighed forebrains and cerebella of the mutant and wild-type

mice at 12 months old (n = 8 per genotype). We did not detect

any significant reduction of forebrain or cerebellar weight in

mutant mice at this age (Figure S6B). These results show that

the selective expression of mutant HDL2-CAG transcripts, but

not HDL2-CUG transcripts, is sufficient to elicit neuronal

dysfunction (e.g., rotarod deficits), but not yet sufficient to induce

neurodegeneration at 12 months old.

In conclusion, the BAC-HDL2-STOPmodel provides definitive

mouse genetic evidence that selective expression ofHDL2-CAG

transcript without coexpression of JPH3 or HDL2-CUG tran-

script is sufficient to elicit polyQ pathogenesis and neuronal

dysfunction in vivo.
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Sequestration of CBP
and Functional Interference
of CBP-Mediated Transcription
in HDL2 Mice and Patients
We next explored whether NIs in BAC-

HDL2 could exhibit other molecular
features similar to polyQ disorders including HD (Orr and

Zoghbi, 2007). One such molecular marker that has been

observed in several polyQ disorders (e.g., HD, SBMA, and

SCA3) is the sequestration of polyQ domain-containing nuclear

transcription factors in NIs, such as the potent transcription

coactivator CBP (Kazantsev et al., 1999; Nucifora et al., 2001;

McCampbell et al., 2000). We tested this possibility by immuno-

histochemical staining for CBP with 22-month-old BAC-HDL2

and control brain sections. In wild-type brains, we detected

the characteristic diffuse CBP staining in nuclei throughout

the brain (Figures 6A and 6C). However, in BAC-HDL2 brains,

we detected the presence of CBP-immunoreactive NIs and

a corresponding reduction of diffuse nuclear CBP staining in

cortical and hippocampal neurons (Figures 6B and 6D). Occa-

sionally, CBP-immunoreactive NIs could also be detected in

the striatum (data not shown). The formation of CBP NIs is

time dependent as they were initially detected at 12 months

old, but not at 3 months old (data not shown). Thus, the seques-

tration of CBP in NIs occurred after the formation of polyQ

NIs (first detected at 3 months old). Consistent with the

hypothesis that CBP pathology is mediated by mutant HDL2-

CAG protein, we did not detect any CBP inclusions in 18 to

22 month-old BAC-JPH3 (Figure S4A) or BAC-JPH3b6 controls

(Figure S4B). As expected, silencing sense strand transcript in

BAC-HDL2-STOP mice did not prevent CBP inclusion formation

(Figure S6A).

To provide further evidence that the CBP pathology identified

in BAC-HDL2 mice is relevant to HDL2 patients, we performed

double immunofluorescent staining of HDL2 patient cortical

tissue with anti-CBP and anti-ubiquitin antibodies. As shown

in Figure 6E, we were able to detect CBP-immunoreactive

NIs that colocalized with ubiquitin-immunoreactive NIs in the
40, May 12, 2011 ª2011 Elsevier Inc. 435



Figure 7. CBP-Mediated Transcriptional Dysregulation in Mouse and Primary Neuronal Models of HDL2

(A) Quantitative RT-PCR analyses of the intact BDNF coding region reveal a significant reduction ofBDNF transcripts in 15-month-old BAC-HDL2mice relative to

wild-type control mice (n = 3 per genotype; ***p < 0.01, Student’s t test). Values are mean ± SEM.

(B) CBP occupancy of mouse BDNF promoter II, promoter IV (proximal region: 200–400 bp from the transcription start site; distal region: 800–1000 bp from the

start site), BDNF coding region, and GAPHD promoter were determined by ChIP-PCR in cortical samples derived from wild-type and BAC-HDL2 mice at

15 months old (n = 3 per genotype). ChIP-qPCR (IP/whole-cell extract, %) signals were normalized to whole-cell extract. Immunoprecipitation with IgG was used

for controls. Error bars represent SEM determined from three independent experiments. The results suggest a significant and selective reduction of CBP binding

to the proximal BDNF promoter IV (200–400 bp) in cortical samples from mutant BAC-HDL2 mice compared to WT controls. Values are mean ± SEM (*p < 0.01,

Student’s t test).

(C) Luciferase reporter assays were performed in rat cortical primary neurons with cotransfection of BDNF promoter IV-driven firefly luciferase reporter construct

and vectors expressing either HDL2-CAG14 (wild-type HDL2-CAG protein with 14 glutamine repeats, labeled WT) or HDL2-CAG120 (mutant protein with

120 glutamine repeats, labeled MUT). A separate set of transfection assays was performed with the same plasmids as above but with the addition of

plasmids overexpressing CBP (labeled CBP +). A renilla luciferase expression plasmid was used to normalize transfection efficiency in all the assays. Values are

mean ± SEM (**p < 0.01, *p < 0.05, Student’s t test).
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superior frontal gyri of two postmortem HDL2 brains, but not in

the brains of unaffected controls.

CBP is a histone acetyltransferase and a critical transcriptional

coactivator (Chan and La Thangue, 2001) and CBP sequestra-

tion and transcriptional interference has been implicated in HD

pathogenesis (Nucifora et al., 2001; Steffan et al., 2001). To

assess evidence of CBP functional impairment in HDL2, we

decided to use CBP-mediated BDNF gene transcription as

a model. BDNF is a critical trophic factor for striatal neurons

and its transcriptional downregulation has been implicated in

HD pathogenesis (reviewed by Zuccato et al., 2010). Moreover,

our analyses of BDNF transcription by using quantitative

RT-PCR analysis confirmed a significant reduction of tran-

scripts containing the entire BNDF coding region in 15-month-

old BAC-HDL2 cortices compared to those in the wild-type

controls (Figure 7A).

We next addressed whether this BNDF transcriptional deficit

in BAC-HDL2 could in part be due to functional interference of

CBP. Transcription of BDNF is initiated at multiple promoters

(Hong et al., 2008). In HD, there is evidence that transcription is

reduced at both BDNF promoter II (Zuccato et al., 2001) and

promoter IV (Gambazzi et al., 2010; Gray et al., 2008). Relevant

to the current study BDNF promoter IV is regulated by

neuronal activity and targeted by CREB and CBP (Hong et al.,

2008). We hypothesized that mutant HDL2-CAG may interfere

with CBP function and therefore could alter the transcription

from BDNF promoter IV. To test this hypothesis, we used 15-

month-old BAC-HDL2 and wild-type cortical extracts to perform

chromatin immunoprecipitation (ChIP) experiments to quantify

the amount of CBP bound to proximal versus distal regions of

BDNF promoter IV by using BNDF promoter II as well asGAPDH
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promoter regions ascontrols (Martinowich et al., 2003). As shown

in Figure 7B, we found a significant and selective reduction in the

amount of CBP bound to the proximal region of BDNF promoter

IV in BAC-HDL2 cortical samples compared to those from wild-

type controls. Such a difference was not observed in the distal

region of BNDF promoter IV, in the control BNDF promoter II, or

in the GAPDH promoter. Consistent with this finding, we also

detected a decrease in histone H4 acetylation (H4Ac), an epige-

netic marker of transcriptionally active chromatin, in the BDNF

promoter IV in the BAC-HDL2 cortical samples compared to

the wild-type controls (Figure S7). However, we did not observe

any significant changes of other histone markers such as

H3K4me3 or H3K27me3 (Martinowich et al., 2003).

Finally, to further explore in a primary neuron model whether

CBP could functionally modify HDL2-CAG-mediated transcrip-

tional dysregulation of BDNF promoter IV, we cotransfected

primary cortical neurons with a reporter plasmid containing

BDNF promoter IV-driven firefly luciferase and plasmids

expressing either mutant (120 CAG repeats) or wild-type

(14 CAG repeats) Flag-tagged HDL2-CAG proteins (Figure 7C

and Figure S5). At 24 hr posttransfection, when we did not

detect any significant cell death (data not shown), we found

that mutant, but not wild-type, HDL2-CAG can induce significant

reduction of firefly luciferase activity relative to the control renilla

luciferase activity, suggesting that expression of mutant, but not

wild-type, HDL2-CAG can interfere with BDNF promoter IV tran-

scriptional activities (Figure 7C). Importantly, cotransfection of

CBP can rescue such polyQ-length-dependent interference of

transcription in this primary neuron model (Figure 7C).

In summary, our analyses of HDL2 models in primary neurons,

mice, and patients provide converging evidence to support



Figure 8. A Schematic Model for Patho-

genic Mechanisms Revealed by HDL2

Mouse Model in which an Antisense

Expanded CAG Transcript Is Mediating

PolyQ Pathogenesis In Vivo

An expanded CAG repeat (HDL2-CAG) antisense

to the JPH3 sense strand is transcribed from its

own promoter immediately 50 to the CAG repeat

and the transcript is then translated into an

expanded polyQ protein termed HDL2-CAG.

Mutant HDL2-CAG is translocated and accumu-

lated in the nucleus to form prominent NIs con-

sisting of HDL2-CAG protein, ubiquitin, and at

a later time point, CBP. Transcriptional dysregu-

lation, in part from interference of CBP-mediated

activation of gene expression (e.g.,BDNF), may be

a shared molecular pathogenic mechanism

between HD and HDL2.
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polyQ-length-dependent CBP sequestration and functional

interference of CBP-mediated transcription in HDL2.

DISCUSSION

We have generated and characterized BAC transgenic mouse

models of an HD-like disorder, HDL2. BAC-HDL2 mice recapitu-

late several key phenotypes found in HDL2 patients, including

age-dependent motor deficits and selective forebrain atrophy.

They also capture two molecular pathogenic hallmarks of

HDL2: the progressive accumulation of ubiquitin-positive NIs

and the presence of CUG-containing RNA foci that are not colo-

calized with NIs. Importantly, this model reproduces the brain

region-specific distribution of NIs seen in the patients, suggest-

ing that the mechanism underlying the pathogenesis of NIs is

probably reproduced in this mouse model. Furthermore, the

disease phenotypes are not present in control BACmice without

the CTG/CAG repeat expansion.

Our study provides insight into the molecular mechanism

leading to polyQ pathogenesis in BAC-HDL2 mice (see sche-

matics in Figure 8). By using a series of BAC transgenic mouse

models, we demonstrated the expression of an expanded

CAG-containing transcript from the strand antisense to JPH3,

with its expression driven by a novel promoter. Second, immu-

nohistochemistry and western blot analyses demonstrated that

this transcript is expressed as a protein containing an expanded

polyQ tract. Third, we used two antibodies relatively specific for

polyQ to demonstrate the accumulation of NIs containing polyQ

in two independent lines of BAC-HDL2 mice and found the

spatial distribution of NI accumulation to be strikingly similar to

that found in HDL2 patients. Fourth, we used two control BAC

mouse lines with normal CTG/CAG repeats to demonstrate

that disease pathogenesis in BAC-HDL2 mice, including NI

formation, is dependent on the CTG/CAG repeat expansion.

Finally, by genetic silencing of the JPH3 sense strand in

BAC-HDL2-STOPmice, preventing expression of CUG-contain-

ing transcripts, we provided definitive genetic evidence that the
expression of the HDL2-CAG transcript alone can lead to the

formation of polyQ-containing NIs and manifestation of motor

deficits. Taken together, our analyses of the series of HDL2

mouse models provide an important mechanistic insight that

the expression of a novel expanded polyQ protein could play

a critical role in HDL2 pathogenesis in vivo.

Prior to this study, the expression of an expanded antisense

CAG-containing transcript or a novel polyQ protein had not

been demonstrated by using postmortem patient brain tissues

(Holmes et al., 2001; Margolis et al., 2005). There are several

possible explanations to account for the more sensitive detec-

tion of the CAG transcript and polyQ-expanded protein in

HDL2 mice than in patients. First, unlike the postmortem brain

tissues, the HDL2 mouse brains used for the studies do not

exhibit robust neurodegeneration that may lead to the loss of

neurons expressing mutant CAG transcripts at high levels.

Second, the sequence difference between the human mutant

JPH3 transgene and murine wild-type locus in the same HDL2

mouse permits the easier detection of the mutant antisense

transcripts. Third, the much longer polyQ repeat in the BAC-

HDL2 mouse model (120Q, as compared to 40–50Q in patients)

also permits more sensitive detection of the small amount of

soluble mutant polyQ protein with antibodies that provide signal

strength in western blots depending on the polyQ length (e.g.,

3B5H10). Because the brain regional and subcellular distribution

of the NIs are remarkably similar between HDL2 mice and

patients, it would strongly argue that themolecular pathogenesis

for such NIs in HDL2 mice and patients is also likely to be similar.

Future studies with additional patient samples and more sensi-

tive detection methods may be needed to demonstrate HDL2-

CAG transcript and protein in the patient brains.

Although our study is focused on themechanistic investigation

of the novel antisense CAG repeat transcript and its polyQ-con-

taining protein product, our study does not exclude a con-

tribution of other potential mechanisms to aspects of HDL2

pathogenesis, such as partial loss of JPH3 function or CUG

repeat RNA gain-of-function toxicity (Rudnicki et al., 2007).
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Despite the fact that our study was not designed to address

these alternativemechanisms, ourmodels do support a potential

role of CUG RNA in disease pathogenesis, because BAC-HDL2

mice accumulate CUG RNA foci that can sequester Mbnl1,

hence mimicking those molecular pathological hallmarks in the

patients. Importantly, the CUG RNA foci and NIs in both HDL2

mice and patients appear to be distinct entities, consistent

with the interpretation that independent pathogenic mecha-

nisms lead to their formation (Rudnicki et al., 2007; Figure S2B).

Because expanded CUG repeat RNA is clearly pathogenic in

DM1 via an RNA gain-of-function mechanism (Mankodi et al.,

2001), in part via sequestration and depletion of MBNL1 (Kana-

dia et al., 2003), future mouse genetic studies are needed to

address whether the expression of expanded CUG repeat tran-

scripts also could mediate CUG repeat RNA toxicities in vivo.

An overarching goal of this study was to shed light on potential

common pathogenic mechanisms shared between HD and

HD-like disorders. By the development and analysis of the

BAC mouse genetic model for an HD-like disorder, we have

already gained some initial insights toward this important objec-

tive. First, our cumulative analysis of these models suggests that

expanded polyQ-mediated pathogenesis may be a shared

pathogenic mechanism between HD and HDL2. The finding

that a mutant polyQ protein may contribute to HDL2 pathogen-

esis in BAC-HDL2 mice is consistent with the presence of NIs

that are immunostained with both 1C2 and 3B5H10 antibodies

in HDL2 brain and the comparable pathogenic CAG repeat

threshold for HDL2 and HD (about 40 triplets). It is striking that

this threshold is similar to other polyglutamine diseases, but is

much shorter than the threshold for most of the nonpolyglut-

amine repeat expansion disorders, most prominently DM1.

Thus, our study provides experimental evidence to suggest

that therapeutics that ameliorate expanded polyQ toxicity could

benefit those with both HD and HDL2.

Another potentially shared pathogenic mechanism between

HD and HDL2 is transcriptional dysregulation mediated by

sequestration and/or functional interference of CBP. Prior

studies have demonstrated that mutant huntingtin N-terminal

fragments can bind to and/or sequester CBP into aggregates,

leading to changes in CBP-mediated transcription (Kazantsev

et al., 1999; Nucifora et al., 2001; Steffan et al., 2000). Although

physical depletion of CBP is not consistently observed in all HD

mouse models (Yu et al., 2002), functional interference of CBP

has been observed in HD as well as other polyQ disorders.

Indirect restoration of CBP function via histone deacetylase inhi-

bition has been shown to be beneficial in several animal models

of HD (Steffan et al., 2001) and in other polyQ disorders such as

SBMA (McCampbell et al., 2000; Taylor et al., 2003). Our analysis

of BAC-HDL2 mice provides evidence that expression of BNDF

is significantly reduced in the mutant cortex at 15 months old,

and our in vivo ChIP analysis and primary neuron study reveal

that mutant HDL2-CAG can selectively interfere with CBP coac-

tivator function at BDNF promoter IV (Hong et al., 2008). Our

study supports the notion that mutant HDL2-CAG protein can

perturb CBP-mediated transcription, in part, but not necessarily

exclusively, through the sequestration of CBP into NIs. Our

current study does not rule out the possibility that mutant

HDL2-CAG protein may also disrupt the function of other critical
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nuclear transcription factors such as TBP (Rudnicki et al., 2008).

Additional gene expression and epigenetic profiling, along with

functional manipulation of these molecular pathways in HDL2

mice, will be necessary to critically evaluate their contribution

in disease pathogenesis.

Finally, our study reveals the complexity of disease pathogen-

esis mediated by trinucleotide repeat expansion. Together with

SCA8 (Moseley et al., 2006), our models provide another

compelling example in which bidirectional transcription across

an expanded CTG/CAG repeat leads to the expression of an

antisense CAG transcript and previously unrecognized polyQ

protein toxicity. Because the predicted HDL2-CAG protein has

no known homology to any other protein in the human proteome

beyond the polyQ stretch (data not shown), the function of this

transcript and the small protein it encodes remains to be

explored. Given the recent discovery that antisense transcription

is nearly ubiquitous throughout the mammalian genome

(Katayama et al., 2005), our study highlights the importance of

examining antisense repeat-containing transcripts and their

ORFs in the pathogenesis of other brain disorders.

EXPERIMENTAL PROCEDURES

Generation of BAC Transgenic Mouse Models of HDL2

Human BAC (RP11-33A21) containing the JPH3 genomic locus from BACPAC

Resource Center (Oakland Children’s Hospital, Oakland, CA) was engineered

by using homologous recombination andmicroinjected into FvB/N embryos to

generate the BAC transgenic mouse lines, BAC-HDL2, BAC-HDL2-STOP, and

BAC-JPH3 (Yang et al., 1997; Gong et al., 2002). These mouse lines were

maintained in FvB/NJ inbred background. A second BAC control mouse that

was generated by using the wild-type JPH3 BAC (CTD-2195P9) was created

and maintained in the C57/BL6 background (BAC-JPH3b6). More details

about the transgene constructs and initial characterization of the mouse lines

are in Supplemental Experimental Procedures.

Reverse Transcriptase PCR Analyses of Strand-Specific

RNA Expression

For RT-PCR analyses of JPH3 sense strand and antisense HDL2-CAG tran-

scripts, total RNA was extracted by using the RNeasy Lipid mini-kit (QIAGEN,

Valencia, CA). Synthesis of cDNA was primed by using either oligo(dT)20

(Invitrogen, Carlsbad, CA) or strand-specific oligonucleotide primers (see

Table S1 for primers). Both 50 and 30 RACE analyses were performed by using

FirstChoice� RLM-RACE kit (ABI) following the manufacturer’s instructions.

A random-primed reverse transcription reaction and nested PCR was used

to amplify 50 and 30 ends of the transcript (see Table S1). Quantitative RT-PCR

analyses of BDNF transcripts in BAC-HDL2 and control cortices were per-

formed by using published protocol (Gray et al., 2008).

Accelerating Rotarod, Brain Weights, and Stereological

Measurement of Brain Volumes

See published protocols for the rotarod, forebrain and cerebellar weights, and

stereological measurement of cortical and striatal volumes (Gray et al., 2008;

Gu et al., 2009; see Supplemental Experimental Procedures).

Immunohistochemistry

Mouse brains were perfused, sectioned, and immunostained by using estab-

lished protocols (Gray et al., 2008; Gu et al., 2009; see Supplemental

Experimental Procedures). HDL2 brain samples used in the study were

described in detail before (Rudnicki et al., 2008). The following antibodies

were used to stain NIs in HDL2 models: 3B5H10 (1:1000; Sigma, St. Louis,

MO), 1C2 (1:3000; Chemicon, Billerica, MA), CBP (1:3000; A-22 & sc-583,

Santa Cruz, Santa Cruz, CA), ubiquitin (1:1000; DakoCytomation, Carpinteria,

CA), 3B5H10 (1:2000), MBNL1 antibody (A2764, 1:10000 dilution; Lin
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et al., 2006). Antigen retrieval for polyQ NI detection by using 3B5H10 was per-

formed according to published protocols (Osmand et al., 2006). More details

on immunohistochemical methods and reagents and quantitation of NI sizes

can be found in Supplemental Experimental Procedures.

Western Blotting

Brain extracts or nuclear and cytoplasmic fractionations were performed by

using established methods (Gray et al., 2008; Gu et al., 2009; see Supple-

mental Experimental Procedures). Antibodies for western blot included:

JPH3 exon 4 (1:1000; H. Takeshima, Tohoku University, Japan), M2-Flag

(1:500), a-tubulin (1:2000), 3B5H10 (1:1000; Sigma, St. Louis, MO), and 1C2

(1:2000; Chemicon, Billerica, MA).

Chromatin Immunoprecipitation

ChIP analyses were performed by using our established method (Martinowich

et al., 2003; see Supplemental Experimental Procedures) with the following

antibodies: anti-CBP (sc-583, Santa Cruz) and anti-IgG (sc-66931, Santa

Cruz). Real-time quantitative PCR was performed by using iQ SYBR Green

Supermix (Bio-Rad). For quantification of relative level of CBP occupancy,

we calculated the percentage of immunoprecipitated DNA over whole-cell

extract. Primer sequences used in ChIP-qPCR are listed in Supplemental

Experimental Procedures.

DNA Constructs, Cortical Primary Neuron Culture, Transfection,

and Luciferase Reporter Assays

See details in Supplemental Experimental Procedures.

Statistical Analysis

All data are shown as the mean ± SEM. SPSS 14.0 statistics software (SPSS,

Chicago, IL) was used to perform all statistical analyses. The significance level

was set at 0.05. See more details in Supplemental Experimental Procedures

and in our published methods (Gray et al., 2008; Gu et al., 2009).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2011.03.021.
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